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Abstract. Part 1 of the paper presents fundamental information about the experimental and 
theoretical research oriented to determine the resistance of thin-walled cold-formed compressed steel 
members with closed cross-sections, [1]. The investigated members were made from homogeneous 
material. The theoretical analysis was oriented to determine the resistance of mentioned members 
according to European and Slovak standards, while the experimental investigation was to verify the 
theoretical results and to investigate the behavior of the above-mentioned members during the loading 
process, [2]. Part 2 is focused on the numerical analysis of the achieved results, as well as on 3D 
modeling and simulation of the experimental tests. 
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Introduction 
The first paper "Analysis of the resistance of thin-walled cold-formed compressed steel members 

with closed cross-sections - Part 1", brought a global overview of the achieved results and presented the 
differences between the results of experimental tests and other results, obtained according to different 
calculation methods. Because of the mentioned differences, it was necessary to carry out a detailed 
numerical analysis to clarify the identified deficiencies. The numerical analysis has been oriented towards 
the investigation and modelling of initial imperfections, caused by production processes, on the load-
bearing capacities of the mentioned members. This analysis was based on the modelling of actually 
measured initial imperfections as spatial areas, also on the 3D simulation of the experimental tests with 
non-linear calculation procedures using software ANSYS based on the FEM, [3]. The results are very 
extensive; therefore the paper deals only with Cross-sectional group B2, Table 1 and Figure 1.  

Table 1. Dimensions and material characteristics, Cross-sectional group B2 

Tested member 
b h t r L fy fu 

[ mm ] [ MPa ] 
B21 207,93 103,08 2,12 3,0 650,00 242,33 360,00 
B22 207,47 103,18 2,10 3,0 649,88 242,33 360,00 
B23 207,35 102,62 2,16 3,0 649,25 242,33 360,00 

 

 
Figure 1. Scheme of the tested members; Cross-sectional group B 

1. Analysis of the size and shape of initial imperfections 
As it was stated in the first part, [1] experimental limit loads were smaller than the expected 

theoretical values for all tested members. One of the possible implications was due to the size and shape 
of initial (production) imperfections. In terms of tolerance, the maximal discrete measured initial 
imperfection of the webs was 1,51mm and the maximal tolerated imperfection is given in the standard as 
b/50, which is 4,15mm, [4]. It follows that the problem is not in the size of these imperfections but in their 
distribution and shape.  

The referred standard, EN 1090-2 + A1:2012, permits a maximal tolerated value b/50 for 
imperfections in a sinusoidal waves form as shown in Figure 2.  
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The initial imperfections of all tested members were modelled in the mathematical software 
MATLAB as spatial areas. The results showed that none of the webs had uniform initial imperfection 
shapes, and not at all of a sinusoidal waves form. Figures 3 and 4 illustrate the shape of initial 
imperfections for the relevant webs of member B21. Midline initial imperfections of all webs are illustrated 
by graphs in Figure 5. 

 
Figure 2. Tolerated initial imperfections according to [4] 

 
Figure 3. Initial imperfections shape of member B21, web 1 

 
Figure 4. Initial imperfections shape of member B21, web 2 

 
Figure 5. Midline initial imperfections of all webs 

The overall analysis of the initial imperfections shape for all tested members indicates that the 
expected tolerated shape in the relevant standard is theoretical and cannot be achieved in reality. The 
spatial areas in Figures 3 and 4, also the graphs in Figure 5 clearly show that the initial (production) 
imperfection is a random variable and must be more precisely reflected in the calculation procedure. For 
these reasons the detailed theoretical and numerical analysis were necessary to be performed using the 
software based on the FEM – ANSYS. 

2. Creation of calculation models and the experiment simulation  
The target of the FEM analysis was to obtain more accurate data about the post-critical behaviour 

of the mentioned members, to determine their limit loads and to compare them with the experimental 
results. The volume shell finite element SOLSH190, quad and triangular, was used to create the 
calculation models, geometrical and physical non-linear calculation was applied. The finite element 
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Figure 8. Final deformation (a) and equivalent elastic strain (b), member B23 

  
Figure 9. Equivalent stress (a) and equivalent plastic strain (b), member B23 

Figure 10 illustrates the individual limit loads, obtained by the calculation according to relevant 
standards, [9, 10 and 11], by (FEM) numerical simulations and by the experimental investigation of tested 
members B21, B22 and B23. From Figure 10 it is evident, that the experimental limit loads of individual 
tested members are smaller than the limit loads obtained by relevant standards. 

 
Figure 10. Comparison of individual limit loads of members B21, B22 and B23 

Figure 10 also presents the influence of initial imperfections through the process of 3D FEM 
simulations. The results' correlation between FEM simulation, without considering the initial 
imperfections, and theoretical calculation according to EN 1993-1-3:2006 means that the Standard 
neglects the effect of initial imperfections, or does not consider them when they are not of a sinusoidal 
shape with a size limitation up to b/50. 

a b 

a b 
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Conclusion 
1. Based on the obtained experimental results, data acquired from the calculation models and 

from the theoretical-numerical analysis, it is evident that the resistances of compressed thin-walled cold-
formed steel members are significantly influenced by the initial imperfections and/or by the initial buckling 
shapes of their individual webs.  

2. Figure 10 indicates the results’ correlation between FEM simulation, without considering the 
initial imperfections, and theoretical calculation according to EN 1993-1-3:2006. This Figure also 
indicates the correlation between experimental results and FEM simulation, taking the initial imperfections 
into consideration. The FEM simulation proves that the calculation procedures in the relevant standards 
are not sufficient enough to consider the influence that the initial imperfections have on the calculation 
process. 

3. The maximal discrete measured imperfection of all webs was smaller than the maximal 
tolerated value, provided by the standard EN 1090-2 + A1:2012-03 as b/50. Although this condition has 
been met, the results revealed a serious effect of the initial imperfections. The expected tolerated 
buckling shape in this standard is theoretical and cannot be achieved because the initial (production) 
imperfection is a random variable and must be more precisely reflected in the calculation. 

4. The obtained results broadens the knowledge referring to the elastic-plastic resistances of thin-
walled cold-formed steel members, as well as the influence of their initial imperfections. The obtained 
knowledge encourages more consistent and thorough analysis, oriented toward determining real 
tolerance values and shapes of initial imperfections for these profiles and members. 

 

This paper is prepared within the research project VEGA 1/0582/13 "The elastic-plastic behaviour 
of compressed thin-walled cold-formed steel elements and stress-strain analysis of welded steel beams", 
supported by the Scientific Grant Agency of ME SR and SAS.  
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